目前竞争激烈的汽车市场中有着对速度的急切需求。而从消费者方面来说,他们更为关心的是马力。然而,在制造业中,速度就是生产量和生产率的全部。美国汽车制造商们由于众多的原因,包括了车身设计,认知品质还有拥有成本等,正在逐步失去其市场份额。更多信息请点击:,或者拨打我们的热线电话:400-6277-838
虽然关于车身设计的讨论并不在本文的考虑范围内,然而,提高质量和生产率的策略却是讨论的重点。这两者都能通过混合加工技术来实现,这项技术将激光焊接与传统金属极气体电弧焊(gmaw)结合起来进行焊接。
激光参数,比如波长,光束质量,光斑大小,功率密度,焦深,以及光束定位等等,对于成功进行焊接都是十分关键的。其他参数还包括对gmaw能量源的常规补充和脉冲传递,gmaw金属丝的定位,接触的角度,以及金属线的化学性质。此外,基底材料氧化物表面情况,对接处的设计,焊缝宽度以及保护气体类型和流量也给混合焊接工艺的质量和性能带来了影响。
下面将详细的介绍气体的选择对许多方面的影响,这些方面包括了激光光束相互作用,防护效率,焊珠性能,以及用来传输标准的气体混合物和流量的设备。
混合的激光加工技术将一个二级能源合并到焊接池区域。混合加工技术使得激光焊接的优势得到具体化,这些优势包括了焊接速度得到提高,热影响区域受到限制,焊接的接缝变窄同时具有精良的焊道外形。gmaw作为二次能源,它提高了总体的加工能量效率,降低了装备成本的同时还提高了焊接缝隙的能力,此外,它降低了冷却速率,同时改善了铝的能量耦合效率。
其次,尽管设备更加复杂,但是通过减小进行焊接所需要的谐振腔的尺寸,gmaw的供能成本就降低了,从而降低了整个机器的成本。根据所要的结果可以决定gmaw焊丝进给位置在激光光束之前或之后。利用拖尾式的gmaw焊丝进给方式可以实现较高的焊接速度。gmaw焊丝被送入激光产生的熔融焊池中,这样熔融焊丝所需要加入的二次能量就降低了。
此外,当填充焊丝到达尾部时,gmaw的电弧产生等离子体,蒸发了基底材料,从而在焊接池的前边缘处产生了凹陷。在熔融的焊接池内的此凹陷降低了激光光束必须穿透的总深度,从而改善了穿透性能。已有资料很好的证明了,从匙孔或者焊接区域排出的蒸汽粒子会导致激光光束的衰减(散射和吸收),从而降低与基底材料耦合的光束能量。1激光光束的散射和吸收降低了焊接的速度和深度。2胶层决定了粒子越大,衰减效应就越严重。
pg电子试玩网站免费-pg电子最新网站入口保护气体带来最小的平均蒸汽粒子大小。这说明了对co2或yag激光焊接来说,纯氦是控制粒子大小的最佳选择。我们必须承认,氦气与氩气相比,确实有比较高的电离率和较低的等离子体形成电压,但是它的分子重量较小。因此,氦保护气需要较大的流速,以保证有效的将激光光束路径上的金属蒸汽排出。由于氦气的单位成本高于氩气,因此,这就增加了焊接过程中平均每英尺成本。